Chapter 1

Introduction

Mathematically a dynamical system consists of two elements ”dynamics” and ”state”.
Dynamics are rules, describing how a system evolves. States are initial conditions telling
us how a system starts, or they give information about the system in a certain situation
[1]. Most successful rules that can model natural systems are differential equations, which
many theories of physics employ. This is why the mathematician V.I. Arnold says that
differential equations are the basis of scientific mathematical philosophy, which began
with Sir Isaac Newton‘s mechanics and calculus and continues to the present day.

Studying physical nature by means of mathematical modelling attempts to understand
and predict natural phenomenon. Traditionally, models are differential equations and
solutions of them give rise to ” trajectories” that explain the motion of a certain system
like the position of a comet or when the next solar eclipse will take place given particular
initial conditions. Geometrically speaking a differential equation is a vector field on a
manifold, where a vector field is a rule that smoothly assigns a vector to each point on
the manifold. Each point on the manifold represents an individual state, or a possible
initial condition, of the system and the collection of those points form phase-space. The
system is called deterministic if both future and past states are uniquely determined by
its present state. From a classical point of view all physical systems are deterministic
and this determinism implies full predictibility.

The study of chaos in classical mechanics originates in applied mathematics and

mathematical physics. This dates back to the work of French mathematician, astronomer,



and physicist Henri Poincaré. In particular he studied the three-body problem of the
Moon orbiting around the Earth under the perturbation of the Sun one hundred years
ago [2]. Poincaré discovered chaotic behavior in the three body problem and showed that
the deterministic approach explained above is wrong. No matter how intelligent we are,
we will not be able to predict the complete evolution of chaotic systems. In a closed form
(bounded) solution we could expect any small change in the initial conditions to produce
a proportional change in the well predicted deterministic trajectories. But in a chaotic
system, nearby trajectories can diverge in the long term. This implies that, a chaotic
system contains two conflicting concepts determinism and unpredictibility. Equations
that model a natural system are deterministic by formulation but they are unpredictible
by means of ” sensitive dependence on initial conditions”. Another point of view is that
even a perfect knowledge of a system is not sufficient to solve it exactly. The study of
these statements belong to several fundamental branches of pure physics.

Strong non-linear systems may evolve in a chaotic fashion.Their analysis and predic-
tion of their dynamics are not an easy task. With the help of modern dynamical system
theory, perturbation theory, bifurcation theory, differential geometry, topology and dig-
ital computers, a huge scientific discipline, nonlinear dynamics was placed among other
fields of pure and applied sciences even in engineering, biological and social sciences.

In this thesis our attention is on ideas rather than deep mathematical proofs. Our
main topic is chaotic motion in Hamiltonian Dynamical Systems. The absence of in-
variant tori and constants of motion in phase space break the symmetry and make the
systems non-integrable. In other words non-integrable systems exhibit chaotic properties.
Even very simple systems, such as a double-pendulum shows chaotic behaviour.

Geodesic flow in inhomogeneous pp-waves, where geodesic equations are very sensitive
to the initial conditions, is popularly known as dynamical chaos . Dynamics in inhomo-
geneous pp-wave space-times show chaotic behavior. Generated Hamiltonians from these

space-times, seem to represent non-integrable systems.



1.1 Hamiltonian Systems

Conservative systems are loosely called Hamiltonian systems. The mechanics of Hamil-
ton and Jacobi is an elegant way to treat mechanical systems, largely derived from 18th
century celestial mechanics. The modern theory of Hamiltonian Systems has been de-
veloped under two important schools; on one hand there are the numerical calculations
of Hénon-Heiles, Ollongren, Contopoulos, on the other hand there is the theorem of

Kolmogorov, Arnold and Moser (KAM).

1.1.1 Phase Space and Its Hamiltonian

We expect Newton‘s Second Law to remain valid under circumstances undreamt of by
Newton. The second chapter of Newton‘s Principia introduced his Second Law which is

still a profound law of nature telling us :[2]

”The rate of the momentum with time has the same direction and it is
proportional to the applied force”. (Notice that Newton does not state the

Second Law in the form of force and acceleration which most textbooks do)

The idea of phase-space is already defined in Newton‘s Principia. Therefore the
representation space for the development of the dynamical system, called phase space, at
time t is specified by its momentum p; and postion q; , rather than its velocity ¢; and
its position q; as is done in the Lagrangian formalism. We could start by defining the

Lagrangian of the system and make a Legendre transformation to its Hamiltonian [3]

aL 79 .iat
p = @t (L1)
0 q;
- OL %9 .iat :
H(p,q,t) = qu-%—ﬂquqi,t) (1.2)
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The space composed of points specified by the n momenta p; and n coordinates q;
is called the phase-space. In abstract mathematical terminology this is the cotangent

bundle for the manifold in which dynamical system moves. [4] Hamilton’s canonical



equations of motion become 3]

dp H(p,q,t
pi _ _9H(p.¢t) "
dt 9y
dg; H(p,q,t
dg; _ 9H(p,qt) -,
dt Opi

dt a 9qi dt Op; dt = 0= H(p,q,t) = const. (1.5)

There are two sets of first- order equations, rather than one set of second-order equations
in the Newtonian tradition. The solutions of, these sets are vector-fields in phase space,
and define a flow in phase-space. Conservation of energy in Hamiltonian mechanics

requires that the value of H(p,q,t) remain constant along any trajectory and implies

0H(p,q,1)

5 =0,H(p,q,t) =F (1.6)

Conservative Hamiltonians gives rise to the following statement of Liouville‘’s Theorem

[3];

” The flow generated by a time-independent Hamiltonian system ( an au-

tonomous system) is volume preserving in phase-space”

This theorem is fundamental in statistical mechanics, as the density of a dynamical
system D in the neighborhood of the system in phase-space remains constant. Mathe-
matically speaking

dD

(D, Hp., )+ (1.7

( Brackets { } are called Poisson bracket ; they play a crucial role in the dynamics of
particles in phase-space,). we shall see that Liouville‘s theorem restricts geodesic motion

to certain regions, or channels.



1.2 Integrable Systems

Traditional symmetric or regular systems lead to integribility. Since our discussion is
mainly about chaotic dynamical systems, questions like "How or when systems would
behave in a chaotic sense?” are unavoidable. Before proceeding we should define some

concepts without proofs but with more care on ideas.

1.2.1 Constants of Motion and Poisson Brackets

We found that integrable systems are distinguished by having other constants of motion in
addition to energy. Finding them is not an easy task and in many cases it is very difficult
or impossible. Constants of motion generate invariant tori in phase space. Suppose
we can write the Hamiltonian of a system and its equation of motions in the above

framework. Then a function F(p;,q;) is defined as follows [4]

d OF dp;  OF dg;
= —FWpi,¢)=5——+575"—>-
0 P ) op; dt | Oq dt
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0 Op; 0¢;  0q; Op; . F} (19)

(1.8)

Poisson bracket { H , F } can be computed for any two functions in phase-space
and vanishing of Poisson bracket between Hamiltonian H and the function F makes F a
constant of motion. In this sense the Hamiltonian itself is a constant of motion because
{H,H} vanishes to zero.

Vanishing of Poisson bracket is have a geometric interpretation: the vector field (-

%—IZ, %—g) in phase space is tangent to the surface F(q,p) = constant. Conversely, the
vector field (—%—5, %_5) is tangent to the energy surface H(p,q)=E. The trajectories flow in

phase space on the intersection of these two surfaces.

There may be more than one constant of motion for a certain system and each constant
of motion, F;(q,p) = constant, satisfies a vanishing condition of its Poisson bracket with
Hamiltonian. There constants should be independent.

A dynamical system with n degrees of freedom has a phase space of 2n dimensions.



If we could find k independent constants of motion including the energy surface Hamil-
tonian, then the trajectories are restricted to a (2n-k) dimensional sub-space of all phase
space. If the Poisson bracket of two constants of motion vanish then these constants of

motion are said to be ”in involution”. (or commute) [5]

or, 0Fy_8Fw 8Fy_
dp; Oq; Oq; Op; -

{FmﬂFy} =

1.2.2 Invariant Tori and Action-Angle Variables

The most desired stiuation is reached when there are n constants of motion in involution,
this condition implies that the trajectories are confined to an n-dimensional manifold,
and by the theorem of topology this manifold has the shape of an n-dimensional torus.
Each single trajectory flows inside such an invariant torus. The dynamical system is then
called integrable. Also, finding n constants in involution implies integribility of the system
or equivalently the possibility of finding explicit solutions of the equations of motions.

If the above conditions are satisfied, a special system of coordinates can be constructed
in phase space, the action-angle variables. As shown in most text books of classical
mechanics the transformation of an integrable system from the original coordinates (p,q)
to the action angle variables (I,0), can be done by using Jacobi‘s theory of first-order
partial differential equations [3,4,6]. Here I plays the role of momenta with respect to
position angle ©.

Canonical (symplectic) changes of coordinate are defined by,

I = I(q27p2)7QQ:Q2(@7[) (110)
0 = 6(q27p2>7p2:P2(@7I)

H(QlaPlaQ27p2) = H(q17p2,Q2(@7[)7P2(@7I)) = H(Q7p7@7]> = const. (111)

We have dropped ¢1, p1 and Q2, P> turn out to be 27 periodic in the reduced Hamilton‘s

canonical equations

dp  0H(q,p,0,1) d© 0H(q,p,0,1)

dt dq Tdt oI (1.12)



dg _ 0H(q,p,0,1) dI _ 0H(q,p,0,1) (1.13)
dt op " dt 00 )

Our corresponding action integral for closed loop C;

1
Iz:Q—]{ pdq
0 C;

As soon as the invariant tori in phase space are recognized we can construct action-
angle variables, and vice versa. Most of the recent work on chaos in classical mechanics,
and in celestial mechanics starts with the search for integrability (invariant tori), or in

astronomy for with finding action-angle variables.

1.3 The Origins of Chaos:Hamiltonian Systems

The Poincaré-Bendixon theorem says that there are no more than four kinds of behaviour
for differential equations in planar vector fields, these possibilities are a source, sink,
saddle and limit cycle. This implies no chaotic motion is possible in time independent
planar vector fields. To obtain chaotic motion in a system of differential equations one
needs three dimensions, that is, a vector field on a three dimensional manifold. [6]

The asymptotic motions (t— oo)of a flow generates four types of behaviour, in order
of increasing complexity these are equilibrium points, periodic solutions, quasiperiodic
solutions, and chaos. The equilibrium points of a flow are constant, time independent
solutions. The equilibrium solutions are located where the vector fields vanish. A periodic
solution of a flow is a time dependent trajectory that returns to itself in time T, called the
period. A quasiperiodic solution is a solution formed from the sum of periodic solutions
with incommensurate periods (irrational ratio of two periods). If we could not correlate
our asymtotic motion with the classes above, then the motion is by Poincare‘s definition
chaotic.

Application of chaos theory and its tool box has huge ramifications in the manner of
mathematical background. That is why we restrict the origin of chaos to Hamiltonian
system’s . After Poincare's foundations for chaos, Physics was changed by huge revolu-

tions, firstly by General Relativity and than by Quantum Mechanics. After the discovery



of modern computers, the study of chaos has expanded. A study of third integrals by
Heénon and Heiles in 1963 has been very influential because of the questions they raised.
They studied Poincaré sections or Poincaré mappings of certain Hamiltonians. ( The
Heénon Heiles family will be discussed in section 3.2), their study is one of the origins of

chaos theory. [5]

1.3.1 Surface of Section of Hénon-Heiles Type Hamiltonian

Poincaré found it difficult to visualize the three dimensional content of a bowl of noodles.
Therefore, he proposed to make a two dimensional cut in such a way that no noodle is
tangent to this ”surface of section” X. To describe surface of section we can choose internal
coordinates (ps,qz2) that form a conjugate pair of momentum and position. Starting from
any pair (p2o,q20) serves as the initial condition for a trajectory at t=0 in X. This
trajectory will intersect ¥ again at a point (ps1,q21) at time ty, always at the fixed
energy E. This process could be done on a computer with numerical integration of the
equations of motions. [2]

Let us consider the following Hamiltonian dealt with by Hénon-Heiles [5], which we
demostrate a surface-section for this type of Hamiltonian with different energies by nu-

merical integration at q; = 0.

1 1 1
H(p1,q1,p2,q5) = 5(1)? +q;)+ 5(193 +43) + Q%qz—gqg’ (1.14)

The system has two degrees of freedom and the Hamilton‘s equations lead to the system

QA+ = 2010 (1.15)
@+ = —qi+a (1.16)
d
dot = aafh(t):(ha%(t):%

The system derived from the Hénon-Heiles Hamiltonian is integrated numerically to con-
struct Poincaré-sections of the plane { ps, q2 } at q1 = 0 with various constant energies.(E

=1/24,1/18,1/12,1/8,1/7,1/6 ) in figure 1.1. As We have provided a computational souce



code for how to generate such pictures in Appendix 1.1. The idea behind these sections
is they help us to classify dynamics of the system for a certain constant energy. For ex-
ample, on choosing E = 1/12, the transversal plane shows a regular pattern with 7 fixed
points and closed curves around 4 of them. The fixes points correspond with periodic

solutions, the closed curves correspond with tori.
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Figure 1-1: Poincare sections of system that investigated by Hénon and Heiles in 1963 with
various different constant energy surfaces.



Chapter 2

Geodesics in pp-waves

Studies of nonlinear phenomena and chaotic behaviour in general relativity have been
done for different aspects using different approaches. Some examples include solutions to
Einstein‘s equations ( Found in a PhD thesis of Svend Rugh, 1990 from the Niels Bohr
Institue appears as ”Chaos in Einstein‘s Equations”), some cosmological models and
complicated nonlinear models that occur in systems with coupled gravitational and scalar
fields. Other types of investigations are for chaotic geodesic motions in given space-times
like perturbed Schwarzshild and static axisymmetric geometry.[7] This thesis examines
extensively a well known class of vacuum plane-fronted exact gravitational waves with
parallel rays (pp-waves) which were found by Brinkmann in 1923 and gives an analysis

of how chaos arrises. [7,8,9]

2.1 Plane-Fronted Gravitational Waves

Gravitational fields can propagate through empty space-time with the following field
configurations [10] , they;

e move with speed of light along a straight line
e have a flat planar wave front

e are of finite durations.(for sandwich waves)

10



Planar wave solutions can be constructed with direction of motion along the x- axis

and transverse direction defined by the (y-z)-plane with the following metric

_gl“/(?a t) =

The corresponding space-time line element is given by,

—ds?= —dt*+da®+ f2 (x, t)dy* +¢° (x,t)dz*

These metrics

e are flat (Minkowskian) in the (x,t)-plane space-time

-1
0
0
0

e}

1

0 f(x,1)

0

e are generally not flat in the y- and z- directions a space-time, and the value of the

metric depends only on x.

The metric of vacuum pp-wave space-times can be written in a standard form [9]

ds*= 2d¢dC—2dudv — (f+f)du?

(2.3)

where f (u,() is an arbitrary function of the retard time u and complex coordinate

¢ spanning the plane wave surface u = constant, when f is linear the metric (2.3) represents

Minkowski universes, the simplest case for which (2.3) describes gravitational waves arises

for f= h(u)¢? where the arbitrary function h(u) characterizes the profile’ of the wave.

Solutions of these types are called homogenoeus pp-wave solutions. This simple example

of an exact radiative space-time has also been used for the construction of sandwich and

impulsive waves. We will investigate a more general case, geodesics in non-homogeneous

vacuum pp-waves and demostrate their chaotic motion. Before driving geodesic equations

from the metric (2.3) we need to know the corresponding Lagrangian of the system.

11



2.2 The Action Principle for a Relativistic Particle

Consider the world line of an ordinary particle (one that may or may not be free) having

time-like curve [11]

ds?= c*dr? (2.4)

Here, because proper time 7 is an affine parameter, its square can be considered as a

line-element, using symbolic notation with natural units ¢ = 1.

dr= gaﬂdxadxﬂ (2.5)

Using proper time 7 as a parameter we can determine a unit vector pointing in the
direction of time which is nothing but the four velocity U* (tangent vector) satisfying

normalizing condition

UU, = ¢ (2.6)

e = 1,0,—1 for time-like, null and spacelike geodesics respectively. The corre-

sponding action

dx® dab

== [y G

2.7)

Since our affine parameter A is the same as 7, this action turns out to be

A2 o dx®
| dcd . dudy
s=[ \/{2%77 (e P2y (2.9

Than the Lagrangian of the system for a metric time-like e = 1 metric can be

written

= acd¢ dudv 1 — du

L(CvCauvv) =g T G- §(f+f)(d_

9 €
= - 2.10
drdr drdr T) 2 ( )



2.3 Derivation of Geodesic Equations

Equations that show how particle motion evolve with time (flow) can now be derived
using Lagrangian (2.10) and the Euler-Lagrange equations [4] where dot denotes & and

f(u,¢)=f, Re-write the Lagrangian

_ I | — .
L(¢.Cuyv) = ¢C — wo = (f + ) (w)’”
The corresponding Euler-Lagrange equations are

d OL OL

- _ 2.11
dr BQL o¢ (2.11)
d 0L OL
— = (2.12)
dr =
7'8C ¢
d OL 0L
P (2.13)
d OL 0L
P (2.14)
Using (2.11)
. 1_ . 2
(=377 @) (2.15)
Using (2.12)
L D
(= —§f,< () (2.16)
Using (2.14)
—u=0—u=const.=U (2.17)

Using (2.13), and (2.17)

13



= 3T P T O (2.18)

But from (2.10)

-1 =1 = €
v=5[ (=5 (f+NU=3] (2.19)

We can show (2.18) and (2.19) are consistent equations by differentiating (2.19) with
respect to proper time 7, here U# 0. For U = 0 the geodesic equations can be simply
integrated yielding only trivial null geodesics ¢ = {,, u = ug, v=v17 +vp, and spacelike
geodesics ( = %exp(z’cﬁo)T + (p, U = up, v = V17T + vg9, where (,, ug, Vi, vg, and ¢, are

constants

B 1 - _ 1 _
0= (=5 + P U] (2.20)

From (2.15) and (2.16), (2.20) becomes

. 1 1— ~ 1 ) 1 —
v :5[_5!][7?(]2 C _§f7CU2 C _i(f—’_f)mUS}
b3 (F4T) UM CH T U =0 (221)

Which is identical to (2.18), integrating (2.19), we obtain

s (Lo Lo w2 €
oQ)= 7 = [ G ~5(r+PU-Flar (222)
Re-writing this equation,
T N
o(0) =5 / 2 (C —(fHP U —ddrt o (2.23)

The three equations (2.15), (2.17), (2.23) appear as geodesic equations of the given

metric (2.3), where 7 is an affine parameter.

14



Chapter 3

Chaos in pp-waves

Chaos can appear even in the simplest geodesics motions of non-homogeneous pp-wave
space times, with constant profile function. We will show how Hamiltonian flow arises
from geodesic equations and the corresponding Hamilton’s canonical equations of motions
in such space-times. The resultant equations of motion in real coordinates construct a
simple system of nonlinear ordinary differential equations (ODE). We will have many
higher order systems in the domain of potential function that will appear in Hamiltonian
flow. Surprisingly, the corresponding Hamiltonian belongs to a special class of the well-
known Heénon-Heiles family where integrability of this family has been under research for
four decades. Flow of trajectories in phase-space shows chaotic behaviour. These ODEs

seems to have only asymptotic analytic solutions in a global manner.

3.1 Chaotic Hamiltonian Dynamics from Geodesic Equations

In Chapter 2 we introduced the Lagrangian for pp-waves and from it we drived their
geodesic equations. From these geodesic equations, in fact it is sufficient to use (2.15)

only, we shall find the corresponding Hamiltonian. We give (2.15) again here,

Introducing real coordinates x and y by

15



(=x+1y
for non-homogeneous pp-waves f is defined as [9]

7 =2 huc” (3.1)

where the parameter n can take constant values n = 3,4,5 ..,
2 n
d(u) =—h(u) = const. = f = C(
n

Then (2-15) can be re-written with

o= 2h)e )"
Fo= Zhwe—iy)"
L= A
Re-arranging (2-15)
P(x+iy) 1 Cm—1
T+§U Cn(x —iy)"" =0

Since this is a complex equation, real and imaginary parts give respectively for n = 3

d*(z + iy)

1
72 +§U2Cn(:1c—z'y)2 =0

. 3
x+§U20(:E2—y2) =0

?)—SUQny = 0

The equations of motion for n = 3, which will be investigated in the sections that

follow, are already in Newtonian form

r = y2—a:2 (3.2)

16



r = xz(7),y=y(7) (3-3)

The general experession for corresponding Hamiltonian function of the above systems

can be written for real cartesian coordinates as

1
H(py,pyy) = H =5 (0p+0) + V (2, y,0) (3.4)

where the potential V ( this is called an "n-saddle ” [7,8] ) is defined as
1 2 n
V (e, u) =5 U%h(u) Re (¢")

The shape of this potential function explaining geodesics in corresponding non- ho-
mogeneous vacuum pp-wave space-times is shown in figures 3.1, 3.2 and 3.3 for n=3,4,5

respectively.

Figure 3-1: The shape of the potential in real-coordinates when parameter n=3 in potential
function.
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Figure 3-2: The shape of the potential in real-coordinates when parameter n=4 in potential
function

EEEEEE

48

Figure 3-3: The shape of the potential in real-coordinates when parameter n=>5 in potential
function.
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3.2 Hénon-Heiles Hamiltonian

The astronomers Michel Hénon and Carl Heiles worked with different models to under-
stand the motion of stars in the gravitational field of the galaxy, these models are bases
for the development and testing of methods of chaotic dynamical systems in pure physics.
Even in chemistry same the model was adopted to explain molecular vibrations [4]. The
general form of Hénon-Heiles family of Hamiltonian is

1

1 1
H(qy, 2, p1,p2) =5 ?+p§}%§(AQ?%BQ§)+§Q?+Aquﬁ (3.5)

where A, B and ) are constant parameters.
In the previous section we have shown the potential function for n=3, simply called

the ”monkey-saddle” on a plane.[7]

1 1
Vi(gy,92) qui—qlqu V(z,y) =§x3—xy2

Fascinatingly this potential generates a Hamiltonian that belongs to the Hénon-Heiles

family with the following coefficients,
A=B=0\=—1

Integrability of this family was searched for by many researchers, Kowalevskaya and
Painleve analysis which is beyond the scope of this text, show the following cases are
realized to be integrable systems in this type of family [4]:

Case 1: A =0 decouples the motion in x and y.

Case2 : A = —1 with presence of quadratic terms such as B = —2, A = 2 also

becomes separable when the coordinates x+y and x-y are used.
Case3: \ = —% implies the ”third” constant of motion could be found

Cased: A = — with & coefficient in one of quatratic term is also integrable.

According to the cases above our general Hamiltonian that represents geodesic motion

in pp-waves appears to be non-integrable, at least in exact form. Hence it leads to chaos
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in geodesic flow due to the system's sensitive dependence on initial condition. That is
why the previous section was given the title as chaotic Hamiltonian dynamics. We will

investigate numerical and asymtotic solutions in the following sections.

3.3 Numerical Demostration of Chaos in non-homogenous pp-

waves

We shall investigate chaos for geodesic motions on a plane space-time for non-homogeneous

pp-waves generated by the Hamiltoninan,

1 n
H(py pys 0, y) =5 (Pp+0))+ Re (") (3.6)
where ¢ = x + iy and parameter n=3,4,5... . We determine equations of motion for

different values of n, using Hamilton‘s canonical equations, see below. Different potentials
have sets of equations having a simple polynomial structure but it is not simple to find
exact analytical global solution. Beyond this we needed huge amounts of numerical
simulation time to visualize sensitive dependence on initial conditions of trajectories.
For comparison of chaotic behaviour with non-chaotic ones we generated geodesics
for n=1. This potential leads to an integrable motion and is therefore non-chaotic. Its

geodesics are shown in figures 3.4 and 3.5.

3.3.1 Potential Function in the Case of n=2: Homogenous pp-waves

The potential function of the above Hamiltonian represents homogeneous pp-waves in
case of n=2. Corresponding geodesic motions are shown in figures 3.6 and 3.7. The
geodesic motion are found to be non-chaotic, because, nearby trajectories preserve their
separation distance. Liouville‘’s theorem holds for the cases n=1,2. (see figures 3.4, 3.5)
In other words, the volume of trajectories are confined into an invariant tori. There is no
sensitive dependence on initial conditions. Their equations of motion have an analytical
solution and we can predict the motion, hence the Hamiltonian system that generated

by homogenous pp-waves is integrable.

20



Figure 3-4: Geodesic motions, for n=1 with initial condition from rest with numerical integra-
tion of equation of motions.

Figure 3-5: Geodesic motions, for n=1 with initial condition.dx/dt=2 and dy/dt=1 with nu-
merical integration of equation of motions.
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Figure 3-6: Geodesic motions, for n=2 with initial condition from rest with numerical integra-
tion of equation of motions.

Figure 3-7: Geodesic motions, for n=2 with initial condition.dx/dt=2 and dy/dt=0 with nu-
merical integration of equation of motions.
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3.3.2 Polynomial n-saddle Potential Function in the Case of n=3

Potential functions generate different chaotic Hamiltonian systems as we mentioned above
Geodesics obtained for n=3 in equation (3.6) are shown figures 3.8-12 with different initial
condition; z (0) = 0,2,3.1,0 and ¥ (0) = 0,1,0.1,0,3 respectively. The phase-spaces are
{pz:x}, {py,y} and {p,.y,x} obtained as in figures 3.14,3.15 and 3.16 respectively.

In figures 3.8-12, we demostrated the behaviour of geodesics with 72 different trajec-
tories with different initial conditions. We can compare them with two different point
of views. The first one is in terms if sensitive dependence on initial conditions and the
behaviour of nearby trajectories. The second one is distortion of invariant tori and exact
analytical solution of equations of motion.

Obviously, trajectories escape along one of the three channels (see figures 3.8 and
3.15), but the density of trajectories is so different for different initial conditions as seen in
figures 3.8-12, showing motions are sensitively dependent on initial conditions. In figures
3.9 and 3.10 nearby trajectories diverge exponentially. We would expect symmetric
motion in figures 3.11 and 3.12 due to symmetric initial conditions, but due the chaotic
behavior of geodesics figures are not symmetric. There is no explicit analytical solution
for (3.9-10). There is no smooth invariant torus provided as seen figures 3.13 and 3.14,

we could not observe recurrent periodicity in these phase-spaces.

1 . 1 1
H(z,y) :§(Pi+p§)+Re ((z +iy)®) :g(Pi+P§)+§$3—$92

dpz OH(z,y) _ o o dpy OH (z,y)
e L L e et WL L) .
dt Ox T dt o Y (3.7)
dv  O0H(p,q,t)  dy O0H(p,q,t)
dat ope  Tvat . op, (3.8)
r o= a%—qy? (3.9)
y = 2uay (3.10)
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Figure 3-8: Geodesic motions, starting with unit circle, for n=3 from rest, with numerical
integration of equation of motions.

Figure 3-9: Geodesic motions, for n=3 with initial condition, dx/dt=2 and dy/dt=1 with
numerical integration of equation of motions.
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Figure 3-10: Geodesic motions, for n=3 with initial condition.dx/dt=3.1 and dy/dt=0.1 with

numerical integration of equation of motions.
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Figure 3-11: Geodesic motions, for n=3 with initial condition. dx/dt=3 and dy/dt=0 with

numerical integration of equation of motions.
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Figure 3-12: Geodesic motions, for n=3 with initial condition dx/dt=0 and dy/dt=3 with
numerical integration of equation of motions.

Figure 3-13: Phase-Space {P,,x}of the system n=3 from initial condition.dx/dt=0 and
dy/dt=0 with numerical integration of equation of motions.
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Figure 3-14: Phase-Space {P,, y}of the system n=3 from initial condition.dx/dt=0 and dy/dt=0
with numerical integration of equation of motions.

Figure 3-15: Phase-Space {Py,y,x}of the system n=3 from initial condition.dx/dt=0 and
dy/dt=0 with numerical integration of equation of motions.
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3.3.3 Polynomial n-saddle Potential Function in the Case of n=4

We will call the corresponding Hamiltonian, polynomial potential function in real-coordinates

for n=4, Hy, and V, respectively where dots denotes r= %, Y= %.

Vi(z,y) = 2t — 6222 + o (3.11)
dps OHq(z,y) _ 3 2
el e dx° + 12y“x (3.12)
dpy OHy(z,y) 2 3
Dy DY) 952 4 1
o 9y r7y — 4y (3.13)
dx 8H4(p7Q7t) dy 8H4(p7Q7t)
J— — _— = T _— = = .14
dt s P>y op, Py (3.14)
r = —42°+ 1%z, = x(7) (3.15)
y o= 122% — 49’y =y(7) (3.16)

Geodesics for n=4 are shown in figures 3.16-19 with different initial condition as
z (0) = 0,0,2.5 and ¥ (0) = 0,2,0,4 respectively. The phase-spaces are {p,,x}, {p,,y} and
{py,y,x} similarly in figures 3.20, 3.21 and 3.22 respectively.

In figures 3.16-22, we demostrate the behaviour of geodesics with 72 different trajec-
tories with different initial conditions for n=4. Similar analysis may arise like the one
we have done for the case n=3. Four escape channels of geodesics are observed in figures
3.16 and 3.22.

We obtain symmetric motion in figures 3.17 and 3.18 due to symmetric initial condi-
tions, but our potential function is also symmetric. For these reasons, trajectories seems
to behave less chaotic, or not strongly chaotic. There is no explicit analytical solution
for (3.15-16). There is no smooth invariant torus provided as seen figures 3.20 and 3.21,

we could not observe recurrent periodicity in these phase-spaces.

28



Figure 3-16: Geodesic motions, for n=4 with initial condition.dx/dt=0 and dy/dt=0 with
numerical integration of equation of motions.

Figure 3-17: Geodesic motions, for n=4 with initial condition.dx/dt=0 and dy/dt=2 with
numerical integration of equation of motions.
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Figure 3-18: Geodesic motions, for n=4 with initial condition.dx/dt=2 and dy/dt=0 with
numerical integration of equation of motions.

Figure 3-19: Geodesic motions, for n=4 with initial condition.dx/dt=>5 and dy/dt=4 with
numerical integration of equation of motions.
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Figure 3-20: Phase-Space {P,,x}of the system n=4 from initial condition.dx/dt=0 and
dy/dt=0 with numerical integration of equation of motions.

Figure 3-21: Phase-Space {P,, y}of the system n=4 from initial condition.dx/dt=0 and dy/dt=0
with numerical integration of equation of motions.
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Figure 3-22: Phase-Space {Py,y,x}of the system n=4 from initial condition.dx/dt=0 and
dy/dt=0 with numerical integration of equation of motions.

3.3.4 Polynomial n-saddle Potential Function in the Case of n=5

We will call the corresponding Hamiltonian, polynomial potential function in real-coordinates

for n=>5, Hs, and V5 respectively where dots denotes r= %, Y= %.

Vs(x,y) = 2° — 1023y* + 5ay* (3.17)
dpy _ OHs(z,y) _ 4 2.2 4
e = 2 = 5y + 3007y — By (3.18)
dpy _ OHs(zy) _ . 3 3
i oy 202"y — 2027y (3.19)
dx OHs(p, g t) dy _ 0Hs(p,q,t)
— = 22Dl o, =D 2
dt Opa P> Opy Py (3.20)
r = =5yt +302%% — 5yt x = x(7) (3.21)
Yy = 202’y — 2023y, y = y(7) (3.22)

Geodesics for n=>5 obtained in figures 3.23-26 with different initial condition z (0) =

32



0,0.9,2.8,3.5 and ¥ (0) = 0,2.1,1.5,1.1 respectively. The phase-spaces are {p,,x}, {p,.v}

and {p,,y,x} obtained similarly in figures 3.27, 3.28 and 3.29 respectively.

In figures 3.16-22, we demostrated the behaviour of geodesics with 72 different trajec-
tories with different initial conditions for n=>5. Similarly, five escape channels of geodesics
are observed in figures 3.23 and 3.29.

Comparison of figures 3.23-28 show that trajectories are sensitively dependent on
initial conditions. There is no explicit analytical solution for (3.21-22). There is no

smooth invariant torus provided as seen figures 3.20 and 3.21, we could not observe

recurrent periodicity in these phase-spaces.
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Figure 3-23: Geodesics motion, for n=5 from initial condition.dx/dt=0 and dy/dt=0 with

numerical integration of equation of motions.
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Figure 3-24: Geodesics motion, for n=>5 from initial condition.dx/dt=0.9 and dy/dt=2.1 with
numerical integration of equation of motions.

Figure 3-25: Geodesics motion, for n=5 from initial condition.dx/dt=2.8 and dy/dt=1.5 with
numerical integration of equation of motions.
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Figure 3-26: Geodesics motion, for n=>5 from initial condition.dx/dt=3.5 and dy/dt=1.1 with
numerical integration of equation of motions.

Figure 3-27: Phase-Space {P,,x}of the system n=5 from initial condition.dx/dt=0 and
dy/dt=0 with numerical integration of equation of motions.
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Figure 3-28: Phase-Space {P,, y}of the system n=>5 from initial condition.dx/dt=0 and dy/dt=0
with numerical integration of equation of motions.

Figure 3-29: Phase-Space {Py,y,x}of the system n=5 from initial condition.dx/dt=0 and
dy/dt=0 with numerical integration of equation of motions.
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3.3.5 Polynomial n-saddle Potential Function in the Case of n=6

We will call the corresponding Hamiltonian, polynomial potential function in real-coordinates

for n=6, Hg, and Vg respectively where dots denotes r= %, y= %.

Ve(x,y) = 2% — 152%% 4 1522yt — ¢/° (3.23)
dpz _ OHg(z,y) _ 5 3,2 4
2 = o = —60° + 602°y? — 30ay (3.24)
dpy OHg(z,y) 4 2 3 5
=y _ _ZZB\Id) — 2
o 99 30z*y — 60x“y” + 6y (3.25)
dx 8H6(p,q, t) dy 8H6(p7Q7t)
dv_ OHsgt) _ Ay _ OHs(,q,1) _ 3.26
dt O P> Opy Py (3:20)
r = —62° 4 602°y* — 30xy?, v = (1) (3.27)
y = 30z — 60x%y® + 6y°,y = y(7) (3.28)

Geodesics for n=6 obtained in figures 3.30-33 with different initial condition z (0) =
0,2,3.5,4 and ¥ (0) = 0,0.1,0,1.2 respectively. The phase-spaces are {pzx}, {py,y} and
{py,y,x} obtained similarly in figures 3.34, 3.35 and 3.36 respectively.

In figures 3.30-36, we demostrated the behaviour of geodesics with 72 different trajec-
tories with different initial conditions for n=6. Similarly, six escape channels of geodesics
are observed in figures 3.30 and 3.6. And, channels becoming more obvious in phase-
spaces. (see figures 3.34-35)

Comparison of figures 3.30-33 show that trajectories are sensitively dependent on
initial conditions There is no explicit analytical solution for (3.27-28). There is no smooth
invariant torus provided as seen figures 3.20 and 3.21, we could not observe recurrent

periodicity in these phase-spaces.
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Figure 3-30: Geodesics motion, for n=6 from initial condition.dx/dt=0 and dy/dt=0 with
numerical integration of equation of motions.

Figure 3-31: Geodesics motion, for n=6 from initial condition.dx/dt=2 and dy/dt=0.1 with
numerical integration of equation of motions.
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Figure 3-32: Geodesics motion, for n=6 from initial condition.dx/dt=3.5 and dy/dt=0 with
numerical integration of equation of motions.

Figure 3-33: Geodesics motion, for n=6 from initial condition.dx/dt=4 and dy/dt=1.2 with
numerical integration of equation of motions.

39



Figure 3-34: Phase-Space {P,x}of the system n=6 from initial condition.dx/dt=0 and
dy/dt=0 with numerical integration of equation of motions.

Figure 3-35: Phase-Space {P,,y}of the system n=6 from initial condition.dx/dt=0 and dy/dt=0
with numerical integration of equation of motions.
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Figure 3-36: Phase-Space {P,,y,x}of the system n=6 from initial condition.dx/dt=0 and
dy/dt=0 with numerical integration of equation of motions.

3.3.6 Polynomial n-saddle Potential Function in the Case of n=7

We will call the corresponding Hamiltonian, polynomial potential function in real-coordinates

for n=7, Hy, and V; respectively where dots denotes = %, Y= %.

Vi(z,y) = 27 — 2125y? + 3523y* — Tay)® (3.29)
dpa Hy(z,
% - —w — 725 +1052%y2 — 10522y* + 7y (3.30)
dpy OHz(z,y) 5 3,3 5
=Y = 2T 9%y — 14 42 31
dt oy r7y — 1402°y” + 42y (3.31)
d H t d H t
dr _ OHi(p.gt) _  dy _ OHr(p.g,1) —p, (3.32)
dt Opz dt Opy
r = —72% 4+ 1052%% — 10522yt + 79, 2 = 2(7) (3.33)
Yy = 422% — 1402%y° + 4225,y = y(T) (3.34)

Geodesics for n=7 obtained in figures 3.37-39 with different initial condition = (0) =
0,0,1.1 and ¥ (0) = 0,2, 2 respectively. The phase-spaces are {p,,x}, {py,y} and {p,,y,x}
obtained similarly in figures 3.40, 3.41 and 3.42 respectively.
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In figures 3.37-42, we demostrated the behaviour of geodesics with 72 different tra-
jectories with different initial conditions for n=7. Similarly, seven escape channels of
geodesics are observed in figures 3.37 and 3.42. And, channels are also appear in phase-
spaces. (see figures 3.40-41)

Comparison of figures 3.37-39 show that trajectories are sensitively dependent on
initial conditions. There is no explicit analytical solution for (3.33-34). There is no
smooth invariant torus provided as seen figures 3.40 and 3.41, we could not observe

recurrent periodicity in these phase-spaces.

Figure 3-37: Geodesics motion, for n=7 from initial condition.dx/dt=0 and dy/dt=0 with
numerical integration of equation of motions.
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Figure 3-38: Geodesics motion, for n=7 from initial condition.dx/dt=0 and dy/dt=2 with

numerical integration of equation of motions.

Figure 3-39: Geodesics motion, for n=7 from initial condition.dx/dt=1.1 and dy/dt=2 with
numerical integration of equation of motions.
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Figure 3-40: Phase-Space {P,x}of the system n=7 from initial condition.dx/dt=0 and
dy/dt=0 with numerical integration of equation of motions.

Figure 3-41: Phase-Space {P,, y}of the system n=7 from initial condition.dx/dt=0 and dy/dt=0
with numerical integration of equation of motions.
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Figure 3-42: Phase-Space {Py,y,x}of the system n=7 from initial condition.dx/dt=0 and
dy/dt=0 with numerical integration of equation of motions.

We will not do further values of n. Because, the channels that appear in the geodesic
motions become too narrower. Making observations for geodesics became harder in this

scale.
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3.4 Asymptotic Analytic Solution in Polar Coordinates

Non-homogeneous pp-wave space-time generated by the Hamiltonian that we found in

(3.4). Let‘s re-write the potential, and the same Hamiltonian functions [3].

1

Vieyu) = SUBWR(C"),.C = +iy

This potential is called an n-saddle. Transforming to polar coordinates (p, ¢),

Vip,p,uy) = %UQh(uo)ReC” (3.35)
¢ = pexp(ip) = ("= p"{cos(ng) +sin(ngp)i}

Re(" = p"cos(ng),Uh(uy) = const. = 1 (3.36)

Vipb,ug) = —p"cos (nd) (3.37)

We have found the conjugate momenta for the new Hamiltonian above where dots

d
denote %

Pz = ‘ftapy :y,x:pcos(¢),y:psin(¢)
T = peos(e) —pdsin(d), y=psin(9) + p ¢ cos (¢)

and the new Hamiltonian reduces to

H(pypp,08) = 5((1cos(8) = p & sin(6)+( psin(6) + p & cos (8))) + V(5. 0)
.2
H(py,8) = 500" +72 6 )+ " cos (n6) (3.39)

The corresponding Lagrangian can be found from the Legendre transformation

baL(p,é,p, 9., 5 8L(b,¢.,p,¢) 7

dp 0 ¢
.2

Lo 1 .2 9 1 "
= L(p,¢p,¢)=§(p +p ¢)—;p cos (ne)

H(pp7p¢7p7 ¢) = (p7 ¢7p7 ¢)
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L0 p0) _, _ OLp6:p:0)

—p* ¢ (3.39)
dp d¢

Pp =

Equations of motion can be found by using Hamilton‘s canonical equations as follows

) o .2

B = gy =" eostnd) = p b (3.40)
. OH

bo = ~Gg = r"sin(ng)

Using the relations intoduced above our general expressions for the equations of mo-

tion are

.2
p = —p"cos(ng) —p ¢ (3.41)

(P o) = npsin(ng) (3.42)

These equations are a complicated non-linear second order system of differential equa-
tion, and their explicit analytical exact solution seems diffucult to find. For this reason
we will employ an asymptotic approximation for the solution of this system of equation.

Any unbounded geodesics escape to infinity only along one of the n channels in the
potential. See for example figure 3.8 for n=3. The axes of these outcome channels are

given in polar coordinates by the condition [7,8].
cos(ng;) = —1,j=1,..,n,since,V — 0o, p — 00

any unbounded geodesic oscillates around the radial axis ¢; of the corresponding jth

outcome channel and introduces an equality

g, = T (3.43)

n
o) = Agi(r)+ ¢;
if we choose n=3 then the equations of motion become

.2
p = —pPcos(3¢) —p ¢ (3.44)
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(P*¢) = 3p’sin(3¢)

Determining sine and cosine terms with the equality (3.43)

cos(39) = cos3(Ag;(7) + ;) = cos BAG;(T) cos 3¢; — sin 3A¢;(r) sin 3¢,
cos(3¢) = —cos3A¢;(7)
sin(3¢) = sin3(Ag;(7) + ¢;) = sin3A¢;(7) cos 3¢; — sin3A¢; (7) cos 3¢,
sin(3¢) = —sin3A¢,(7)

if, [AG;(T)]? = 0=>sin3A¢;(T) =~ 3A¢,(T)

Let's call A¢;(7) = ¥ for convenience, then the equations of motion are approximated

by

. .2
b - (3.45)

(P2 T) ~ 3050 (3.46)

Q

even this reduced form is not simple for proceeding with the solution. Making the

following anzats seem to solve this system generally,

p =~ [(n/2—1)VCU2(r —7)* ™ (3.47)
U = (1,—7)%(Acosbln(r,—7)] + Bsinbln (7,—7)]) (3.48)

Where A B,a and b are constants.

3.4.1 Local Solution: In Case of n=3

For n=3 p can be expressed with a constant k

p = k(r,—7)"2 (3.49)
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Now we attempt to determine the values of « and b,

p o~ —k(r,—1)7" (3.50)

p o~ 6k(r,—1)* (3.51)
If 7y —» 7 = ¥ = 0 using (3.45), then

p = —p

61<:(TS—T)_4 ~ —/{52(7'5—7')_4 = k=6
we need to determine ¢ and (p? ¥) hence

T —Od(TS—T)ail (Acos[bln (17,—7)] + Bsin[bln (17,—7)])

Q

—(7,—7)* Y(Bbcos[bln (7,—7)] — Absin[bIn (1,—7)])

U o~ —(1,—7)* Y(Aa+bB)cos[pln (r,—7)] + (Ba — Ab)sin[bln (1,—7)]}  (3.52)

PEREY —36(7,—7)*"*{(Aa + bB) cos[bIn (1,—7)] + (Ba — Ab) sin[bIn (7,—7)]} (3.53)

With time derivative,

(p2 \1/) ~ 36(a— 5)(7’8—7')a_6{(Aa +bB) cos[bln (7,—7)] + (Ba — Ab) sin[bIn (7,—7)]}
—36(1,—7)* %{b(Aa + bB) sin[bIn (1,~7)] — b(Ba — Ab) cos[bIn (1,~7)]}
(p2 \II) R~ 36(7'5—7')0‘76{[(1404 +bB)(a —5) + b(Ba — Ab)] cos[bln (1,—7)] (3.54)

+[(ov = 5)(Ba — Ab) — b(Aa + bB)]sin[bln (7,—7)]}
using above equations,

3p30 = 3(36)6(1,—7)* ®(Acos[bln (1,~7)] + Bsin[bIn (1,—7)])  (3.55)

Q

(o)
~ 36(1,—7)* {[(Aa + bB)(a — 5) + b(Ba — Ab)] cos[bIn (1,—7)]  (3.56)

+[(ov — 5)(Ba — Ab) — b(Aa + bB)]sin[bln (7,—7)]} (3.57)
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The coefficients of the sine and cosine functions should be equal then, combining A

and B,

—18A
—18B

ba — 5b + bo

a?—5a — b*+18

~ (a®—5a—b*)A+ (ab—5b+ ab)B (3.58)
~ (o —ba—b*)B+ (ab—5b+ab)A (3.59)
5
~ O:b(a—5+a):>ozz§ (3.60)

4
~ 0=b zg (3.61)

these are local values of a and b.

3.4.2 Global Solution: In General Case

We obtained asymptotic geodesic equations as approximate solution in equations (3.45-

3.46). In the general case.

1 .2
=" —p ¥

D
Q

(P’ T) =~ np"U

We can introduce following anzats

Q

p

2

k(TS—T)E (362)

U ~ (1,—7)%(Acos[bln(1,—7)] 4+ Bsin [bln (7,—7)]) (3.63)

derivatives of these functions appear as expressions in the geodesic equations as

Q

v

—Od(TS—T)ail(A cos [bln (7,—7)] 4+ Bsin [bln (1,—7)])

—(1,—7)* Y(=bAsin [bIn (7,—7)] + Bbcos [bIn (7,—7)])

U~ (TS—T)a_l{(—Bb —aA)cos[bln(17,—7)] + (bA — aB)sin[bln (7,—7)]}

R K2(7,—7)T 7t Y (=Bb — ad) cos [bIn (7,—7)] + (bA — aB)sin[bIn (r,—7)]}

Q

: 4 4 o
(PP 0y ~ k(g +a 1) (7o)
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{(=Bb—aA)cos [bln(1,—7)] + (bA — aB)sin [bln (7,—7)]}

4 4
(= gy,

{(Bb+ aA)sin[bln (7,—7)] + (bA — aB) cos [bln (7,—7)]}

~ nk"(T,

_7)%““(14 cos [bIn (7,—7)] + Bsin[bln (7,—7)])

since powers of (75 — 7) are equal in both sides, then

(p* W)

+(

Q

K—iﬁ+a—&ﬂBb+m@+b@B—bAﬂmﬂMnﬁ{¢ﬂ

4

——+a-1

2—n

)(—bA+ aB) —b(aA+bB)|sin [bln (1,—7)]}

nk™(Acos [bln (7,—7)] + Bsin [bln (7,—7)])

coefficients of sine and cosine functions should be equal then,

nk™ 2A

nk™ 2B

combining A and B,

{(
{(

2—n

2—n

+a—1)(Bb+ aA) + b(aB — bA)}

+a—1)(=bA+ aB) — b(aA + bB)}

4
nk”_Q—(ﬂ+a—1)a+b2 = O
4 1n+2
(2—+a—1)b+ab = 0 a:§n+2
4 1n+2 1n+2
k2 — - —1)= ¥ =0
" G e Vana ™
Vankm2-a? = 0
2n? 1 (n+2)? ) L —2n
- = b K2 =
(n—22 4(n-2) = (n—2)?
1 1
2_ 202 = b=>b=—\/TR2—4dn—4
=9 8n? — (n+2) = =9 ™m n

(3.64)

(3.65)

constants « and b are expressed in terms of n that appears in structural function ¢ in

metric of pp-waves, which is critical for the derivation of corresponding Hamiltonian and

geodesic equations. We demostrate that these equations have asymtotical solutions as

approximation.
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Chapter 4

Conclusions

Physical systems that obey classical mechanics address the problem of integrability. Many
times we employ concepts such as integrability, predictibility and determinisim without
care in standard mechanics [3]. Combination of non-integrability, determinism and un-
predictibility in the dynamical evolution of certain physical systems even ones as very
simple and well-known as pp-waves, can be complex [7,8,9,12]. We introduced the term
”Hamiltonian Deterministic Chaotic Dynamics” for this type of system.

In our work an example of a member of the well-known Hénon-Heiles (HH) Hamilto-
nian family suprisingly was derived from the metric of a free test particle that describes
homogeneuos (quadratic structural function ¢? ) and non-homogeneous (structural func-
tion ¢" n > 3) vacuum plane fronted gravitational waves in Minkowski space-times which
are the simplest waves in the theory of General Relativity. We established all types of
geodesics: timelike, null and spacelike.

Our discussion started in a historical manner: in brief, from the birth of classical
mechanics and its main evolution to chaos with mathematical origins [4]. Dynamics of
planar flow and Poincare sectioning of HH system were obtained by numerical techniques
which has well-founded theoretical basis. Geodesics in pp-waves start from the defini-
tion of a metric found by Brinkmann, and derivation of geodesic equations by standard
methods of classical mechanics with simple relativistic approach. And corresponding
Hamilton‘s canonical equations were obtained. We also confirmed our results with alge-

braic computation packages.
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We investigated the space-times of pp-waves with the function f(¢") of the simplest
form f ~ ¢ as profile function h(u)—constant in detail, for n=2 homogeneous pp-waves
and n=3,4,5,6,7 non-homogeneous pp-waves. For non-constant profile function cases stud-
ied in the reference [9] as sandwich pp-waves. Our observations from our massive numer-

ical and asymtotic analytical solutions are as follows ;

e Quadratic structural function ¢2, generates integrable and non-chaotic regular Hamil-
tonian motion. There is no sensitive dependence on initial conditions. Evolution
of nearby trajectories remains the same in terms of seperation of geodesic motions.

Decision of escape channels by test particles are predictable.

e For cubic (n=3) and other cases (n1=4,5,6,7) the metric of pp-waves generates non-
integrable and chaotic irregular Hamiltonian motion. There is ”sensitive dependence
on initial conditions”, as seen in generated figures 3.4 to 3.42. Evolution of nearby
trajectories exponential fashion in terms of separation of geodesic motions. Decision

of escape channels by test particles are unpredictable in long term.

e Our numerical simulations demostrated that, computution time increases when we
increase the number of channels, this is the signature of ”increasing complexity”, it

appears to be another definition of chaos.

e Phase-spaces of each number of channels as conjugate momenta versus position

show from a different point of view that the above statements are correct.

e If we compare these chaotic phase spaces with the phase-space of simple harmonic

oscillation, irregularities appears very obviously.

e In our asymptotic solutions in polar coordinates, we obtained exact expressions for
solutions. These solutions imply that the behaviour of geodesics in pp-waves are

asymtotically integrable.

e Our attempt to solve the geodesic equation in polar coordinates (even for local
n=3) in a general sense by the very powerful algebraic packages and computers is

of no use. This is a signature of increasing complexity.
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The study of chaotic and highly nonlinear systems is still expanding and is an active
research topic in contemporary theoretical physics, as in General Relativity where the
nature of this theory is strongly nonlinear [7]. Chaotic dynamics in gravitational waves
has already appeared as a current and promising research field, as an extention of cosmo-
logical and astrophysical context. A deeper cutting edge topic called ” Quantum Chaos”
[4], where quantum analogies of chaotic or quantization of non-integrable systems are
under investigation by a semi-classical approach, is important due to fundamental prob-
lems of physics such as correpondence between micro and macro world. Even applied
and experimental physics have employed well founded chaotic dynamical tools, that were
imported from applied mathematics, and it is becoming a growing industry. Also, inves-
tigation of connections of chaos theory with fields such as statistical mechanics, quantum

computing has become hot topics.
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Chapter 5

Appendices

5.1 MapleV Source Codes

5.1.1 Hénon-Heiles Poincaré-mapping

# Poincare Sectioning of particular example of Henon-Heiles Family

# Refreshing memory, and calling differential equations packages.

> restart:with(DEtools,poincare,generate_ic,zoom,hamilton_eqs);

# Definition of our Hamiltoninan

> H := 1/2%(pl1~2+p2~2+ql1~2+q2°2)+q1~2%q2-q273/3;

Generating initial conditions for each constant energy surfaces

as 1/24,1/18,1/12,1/8,1/7,1/6, loop defined

> for h in [1/24,1/18,1/12,1/8,1/7,1/6] do

> ics[h] := generate_ic(H,{t=0,p2=0.1,92=-0.2..0.2,91=-0.2..-0.1,energy=h},3)
> od;

# Numerical calculation of each surface sections

>for h in [1/24,1/18,1/12,1/8,1/7,1/6] do F4[h] := poincare(H,t=-300..300,ics[h],
> stepsize=.1,iterations=3,scene=[p2=-.5..0.5,q92=-.5..0.5]):

> od:

# Plotting the numerical sets that obtained above.

>FF4 := array([[F4[1/24],F4[1/18],F4[1/12]1],[F4[1/8]1,F4[1/7],F4[1/61]11)

%)



>plots[display] (FF4);

# sections displayed.

5.1.2 Hamilton Equations : N-Saddle Hamiltonians

> restart:

# Refreshing memory

> with(plots) :with(DEtools):

# Calling Package for plot structure and differential equations.
# Hamiltonian sub-package imported.

# Defining Monkey Saddle Hamiltonian with potential function.
> H:=1/2%(p1°2+p2°2)+V(ql,q2);

We need to find different outcames arising from parameter
that appear in potetial as n, loop defined.

> for n from 1 to 7 do

> V[n]:=evalc(Re((ql+I*q2)°n)):

> H[n] :=1/2%(p1~2+p272)+V[n];

> hamilton_eqgs(H[n]);

> od;

# Equations of gedesics obtained.

5.1.3 Visualisation of Geodesic Motion

Numerical Demostration of the solution of Hamiltonian motion

in cartesian coordinates for particular case of n=3 in potential function.
Clear the memory.Calling packages for differential equations and
plotUtilities.

> restart:with(DEtools) :with(plots):

# Solution of Hamilton equations for the particular case n=3

# As a second order nonlinear ordinary differential equation

# Equation set and initial conditions defined as

> del := {(DE®2) (x) (t)=y(t)"2-x(t)"2, (DA2) (y) (t)=2xx(t)*y(t)}:

o6



initl := {x(0)=0, D(x)(0)=0, y(0)=1, D(y) (0)=0}:
Solving these equations by Numerical Method
RUNGE-KUTTA-FEHLBERG Method (RFK45)

F := dsolve(del union initl, {x(t),y(t)},type=numeric);
Construction of loop for great number of trajectories

starting from unit circle and displaying plots in one graphic

for k from 0 to 71 do

init[k]:= {x(0) = cos(k*2+Pi/72), y(0) = sin(k*2xPi/72), D(x) (0)=0,
D(y) (0) = 0};

F[kx]:= dsolve(del union init[k], {x(t),y(t)},type=numeric);

P[k]:= odeplot(F[k], [x(t),y(t)],0..4);

od:

display({seq(P[k],k=0..71)},view=[-5..5,-5..5]);

If we changed equations for various type of potentials and initial

conditions, geodesic flows could be investigated as in figures given above.
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ABSTRACT

THE CHAOTIC BEHAVIOUR OF GEODESICS IN NON-HOMOGENEOUS
VACUUM pp-WAVE SOLUTIONS
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Supervisor : Prof. Dr. Mustafa HALILSOY

59 pages, 18 September 2000

We demostrate chaotic behaviour of time-like, space-like and null geodesics of a free test par-
ticle in non-homogeneous vacuum plane fronted gravitational waves with asymptotic analytical
and numerical methods. Geodesic motions that we derived from the pp-wave metric, gener-
ate deterministic chaotic Hamiltonian flow on a plane of real coordinates and corresponding
phase-spaces in the case of n > 3, which belongs to the famous Hénon-Heiles family. Analyzing
integrability of this type of Hamiltonian flow shows that even simple and well-know dynamics

of pp-waves could evolve in complex fashion.
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Etkilesimsiz test parcaciklarinin zamansal, uzaysal ve isiksal geodeziklerinin homojen ol-
mayan boslukta yayilan duzlemsel yercekim dalgalarindaki (pp-dalgalar) kaotik davranislar-
ini, asimtotik-analitik ve sayisal metodlar ile gosterdik. Pp-dalgalarinin metrigini kullanarak
urettigimiz kaotik Hamilton sistemi, gercek duzlemsel koordinatta ve faz uzayindaki n > 3
oldugunda karsilik gelen akislari unlu Hénon-Heiles ailesine ait oldugunu gosterdik. Hamilton
akisinin integre edilebilme kosullarini incelememiz bize pp-dalgalari gibi basit ve cok iyi bilinen

bir dinamigin bile kompleks bir durumda gelisebilecegini gostermektedir.
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