Spectral Ergodicity in Deep Learning Architectures

Mehmet Süzen^a, Cornelius Weber^b, Joan J. Cerdà^c ^a FZJ ^b University of Hamburg ^c University of the Balearic Islands

6 December 2017, Garching

Spectral Ergodicity in Deep Learning Architectures via Surrogate Random Matrices

Mehmet Süzen, Cornelius Weber, Joan J. Cerdà arXiv preprint arXiv:1704.08303 (2017) dataset zenodo doi: <u>10.5281/zenodo.822411</u> code zenodo doi: <u>10.5281/zenodo.579642</u>

Python package: <u>https://pypi.python.org/pypi/bristol</u>

What is *learning* in machine learning?

A computer program is said to **learn** from experience *E* with respect to some class of tasks *T* and performance measure *P*, if its performance at tasks in *T*, as measured by *P*, improves with experience *E*.

Tom Mitchell (1997)

Learning/Forgetting curve Hermann Ebbinghaus (1913)

What is *supervised* learning?

- Not only a function optimization or function inference.
- Combination of two
 - Algorithm is generalized.
 Avoid Overtraining
 - Algorithm obeys some form of Occam's Razor
 - Avoid Overfitting

Main activity in machine learning: Feature engineering

Labels Raw YERM XERNAM representation learning X'ERP*9 New CC-BY 4.0

Manual Representation learning

- Transformation
 - Encode categorical information: one-hot-encode, binning.
 - Nonlinear functions, convolutions.
- Combine features
- Feature selection
 - Forward, backward
- Dimensional reduction
 - PCA, ICA, Gaussian Random Projection, CS

Modern machine learning: Representation learning

- Dramatic increase in learning accuracy: LeCun, Bengio, Hinton Nature, 521, 436 (2015)
- Example in computer vision: RoboCup Soccer
 Robocup soccer using convolutional neural networks (CNNs), Speck, Weber, Wermter (2016)
 - Can a robot reliably locate the ball?
 https://www2.informatik.uni-hamburg.de/wtm/publications/2016/SBWW16/Barros_speck_Ball_Localization_Robocup_Soccer_Convolutional_Neural_Networks_2016.pdf

Red dominates due to lighting

Moving ball

Speck, Weber, Wermter (2016)

Speck, Weber, Wermter (2016)

Speck, Weber, Wermter (2016)

Core issues in learning Performance:

- Initialization of weight matrices.
- How to design a deep learning architecture?

- No theoretical explanation but success of deep learning attributed to
 - *network topology,* multiple processing layers,
 - availability of *large labelled datasets*,
 - leap in *computing capacity*.

Deep learning architectures: A generic approach

A generic approach to identify success in deep learning: Use ensemble of random matrices as a surrogate for weight matrices

- Remember: Initializing Weights problems: Dynamical Isometry
- independent of learning algorithm and dataset
- generic in network topology and node characteristics
- conceptually easy to simulate

Deep learning architectures: A generic approach

A generic approach to identify success in deep learning: Use ensemble of random matrices as a surrogate for weight matrices

- interpretation:
 - ensemble of weight matrices for different layers
 - ensemble of weight matrices for a given topology
- unit spectral radius: Circular ensembles
 - Circular Orthogonal Ensemble (COE)
 - Circular Unitary Ensemble (CUE)
 - Circular Symplectic Ensemble (CSE)

Deep learning architectures: Circular ensembles

Spectra of COE, CUE and CSE are generated via *Bristol Python* package. 40 matrices for each of the ensemble with matrix sizes N=64, 128, 256, 512, 768, 1024.

Deep learning architectures: Spectral ergodicity

Deep learning architectures: Approach to spectral ergodicity

Distance metric: Reminiscent of Kullback-Leibler divergence Measures the effect of depth in different topologies

$$D_{KL}(\Omega^{N_a} || \Omega^{N_b}) = \sum_{k=1}^{K} \Omega_k^{N_a} \log_2(\Omega_k^{N_a} / \Omega_k^{N_b})$$

Spectral ergodicity given different lengths.

Deep learning architectures: Approach to spectral ergodicity

Conclusions and outlook

- We attribute the success of deep learning to spectral ergodicity of a given topology and learning algorithm using surrogate random matrices.
- Interpretation of ensemble can be different layers or entire network.
- The work can be extended to synaptic matrices in the context of spiking neurons.

Thank you

Q & A