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What is learning?

A computer program is said to learn from
experience E with respect to some class of tasks T
and performance measure P, if its performance at
tasks in T, as measured by P, improves with
experience E.
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What is learning?

e

A computer program is said to learn from
experience E with respect to some class of tasks T
and performance measure P, if its performance at
tasks in T, as measured by P, improves with
experience E. muen
Avoid overtraining (do not memorize) and avoid ce-a1 4.0
overfitting (Occam’s Razor).
Tom Mitchell (1997)
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Background: Generalisation for temporal learning

Overtraining (generalisation) How to do cross-validation for time-series?
Occam’s Razor (the least complex model possible) [*]

e Out-of-Sample
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Evaluation R assemmaas e e aa
e Block-resampling e eeeeeeeeeeeee
Politis-Romano o o %
(1994) TEEs=as
e Naive CV: T
Stationarity ——
Correlations Hyndmann 2016
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Reconstructive Cross-Validation (rCV) : A meta-algorithm

Design principles of rCV for time-series

e Logically close to standard cross-validation:
Arbitrary test-set size and number of folds.

e Preserve correlations and data order.

e Does not create absurdity of predicting past from the future data.
e Applicable in generic fashion regardless of learning algorithm.

e Applicable to multi-dimensional time-series.

e Evaluation metric agnostic.
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Reconstructive Cross-Validation (rCV) : A meta-algorithm

The formulation in 1-D ordered data: time-series

e Given training and OOS set: (y,“ tz) (U}J,t]>7] Z Z

e Generating k-folds out of training
2 < Y k
|~ ..~ |y"]

o Random k partitons |y | ~ |y
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Reconstructive Cross-Validation (rCV) : A meta-algorithm

The formulation in 1-D ordered data: time-series

e Given training and OOS set: (y,“ t’L) (wj ; t] ), ] Z Z
e Generating k-folds out of training

o Random k partitions ]yl\ ~ ‘YQ‘ ~ L= ‘yk‘

o Generate k new training partitions with missing at random

k

ym — U yl
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Reconstructive Cross-Validation (rCV) : A meta-algorithm

The formulation in 1-D ordered data: time-series
e K-fold reconstruction i.e., any good imputation, filtering technique.
R™=Y" 4 g™
e Total error due to reconstruction, for example MAPE, component-wise
1 k
N m 5 Mm m
gr =1 21" =9™I/y™

m=1
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The formulation in 1-D ordered data: time-series
e A primary predictive model on K reconstructions
R™=Y" 4 g™
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Reconstructive Cross-Validation (rCV) : A meta-algorithm

The formulation in 1-D ordered data: time-series
e A primary predictive model on K reconstructions
R™=Y" 4 g™

k

1 AN

e Test primary predictive model on OOS data set: §p = — E (W — Wm)
difference component-wise. k q=1

e Total rCV error: Prediction and reconstruction errors, not-unique!

grcv = dr " Gp
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Reconstructive Cross-Validation (rCV) : A meta-algorithm

How to produce learning curve for temporal prediction method?

e Usually not produced for temporal prediction methods.
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Reconstructive Cross-Validation (rCV) : A meta-algorithm

How to produce learning curve for temporal prediction method?
e Usually not produced for temporal prediction methods.

e Use rCV performance with varying k-fold reconstructions.

L (k) = Gerr
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Generating learning curves for time-series via rCV

How to produce learning curve for temporal prediction method?
e Usually not produced for temporal prediction methods.
e Use rCV performance with varying k-fold reconstructions.
err _k
L (k) s gerr

e Increasing data size by increasing number of folds:
More non-reconstructed points
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A proof of concept implementation

e Synthetic data : Ornstein-Uhlenbeck Process (OU)
o Brownian motion in statistical physics
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A proof of concept implementation

e Synthetic data : Ornstein-Uhlenbeck Process (OU)
o Brownian motion in statistical physics

e OU can be generated via multivariate Gaussian process
via exponential Kernel

Vou(ti) ~ A (5.0, exp(—D"/2.0))

e Distance matrix
1000 points with 0.1 spacing and 500 points for OOS
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A proof of concept implementation

e Synthetic data : Ornstein-Uhlenbeck Process (OU)

° Apply k-fold rCV - Ornstein-Uhlenbeck Process
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A proof of concept implementation

e Synthetic data : Ornstein-Uhlenbeck Process (OU)

e Apply k-fold rCV . Ornstein-Uhlenbeck Process
. 76
o Use Gaussian Process £
for both reconstruction ;5'
and temporal prediction & 47
model. = 3
T
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T y : Historic for rCV
w : Out-of-Sample (00S)
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A proof of concept implementation

e Synthetic data : Ornstein-Uhlenbeck Process (OU)

e Apply k-fold rCV

o Use Gaussian Process
for both reconstruction
and temporal prediction
model.

o No learning of GP
parameters for temporal
prediction as PoC only.
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Ornstein-Uhlenbeck Process

—— y : Historic for rCV
w : Out-of-Sample (00S)
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A proof of concept implementation

e Synthetic data : Ornstein-Uhlenbeck Process (OU)
e Apply k-fold rCV

o Gaussian Process
10-fold imputation
Mean error 0.014.
OU Kernel is used.
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A proof of concept implementation

e Synthetic data : Ornstein-Uhlenbeck Process (OU)

e Apply k-fold rCV

o Gaussian Process
10-fold imputation
Mean error 0.014.
OU Kernel is used.

o rCVerror:0.013
MAPEs
Reconstruction: 0.029
Prediction: 0.468
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A proof of concept implementation

Learning curve with reconstruction error
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Ornstein-Uhlenbeck Process (OU) : rCV Learning Curve

Learning curve with prediction error
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Outlook

e To be submitted: in progress.

e A meta-algorithm rCV:
Generic implementation as a reusable package (time-permits)

Independent of imputation and prediction models used
Compatible interface with scikit-learn/statmodels/R-forecast
Include real data-set examples

Muiltivariate series examples

O O O O
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